

Zähler-Anschluss Handbuch Version 2.18 Solar-Log™

Herausgeber: Solar-Log GmbH Fuhrmannstr. 9 72351 Geislingen-Binsdorf Deutschland

E-Mail: <u>info@solar-log.com</u> Kontakt: <u>https://www.solar-log.com</u>

Technischer Support: Endkunden und nicht geschulte Installateure Tel.: 0900 1737564*

Installationsfragen bei geschulten Installateuren und Solar-Log™ Partnern sowie bei Service und Planungsanfragen Tel.: +49 (0)7428/4089-300

*0,59 Euro je angefangene Minute für Anrufe aus dem deutschen Festnetz, Mobilfunkpreise können abweichen.

Die Solar-Log™ Handbuch-Orientierung

Firmware **5 & 6**

Solar-Log Base-Handbuch (FW 6.x)

Solar-Log Base-Handbuch (FW 5.x)

Solar-Log Komponenten-Anschluss Handbuch (FW 6.x)

Solar-Log Komponenten-Anschluss Handbuch (FW 5.x)

Solar-Log Smart-Energy Handbuch

Solar-Log Zähler-Anschluss Handbuch

Solar-Log PM-Steuerung Handbuch (FW 6.x)

Geöffnetes Handbuch

Weitere Handbücher

/

Inhaltsverzeichnis

1	Externe Strom-Zähler	6
1.1	Erfassung des Energieflusses mit externen Strom-Zählern	. 6

2	Zähler-Betriebsmodi des Solar-Log™	 9
2.1	Bedeutung der Zähler-Betriebsmodi des Solar-Log™	 9

3	Allgemeines zur Verkabelung	10
3.1	Verkabelung S0 Zähler	. 10
3.2	Verkabelung RS485 Zähler	. 10
3.3	Verkabelung Zähler zur Eigenverbrauchserfassung	. 10

4	Solar-Log [™] PRO	14
4.1	Solar-Log™ PRO1	. 14
4.2	Solar-Log™ PRO2	. 17
4.3	Solar-Log™ PRO380	20
4.4	Solar-Log™ PRO380-CT	. 23

5	Elkor - WattsOn	27
5.1	Elkor - WattsOn-1100 (3phasig)	27
5.2	Elkor - WattsOn-Mark II (3phasig)	29

6	Inepro	31
6.1	Inepro 75D	31
6.2	Inepro 1250D	33

7	Iskra	36
7.1	Iskra WS0021	. 36
7.2	Iskra WS0031	. 37
7.3	Iskra WS1102	. 38

8	Janitza "Utility Meter"		39)
---	-------------------------	--	----	---

8.1	Janitza UMG 104 / UMG 604 / UMG 604-PRO (12V / 24V)	. 39
8.2	Janitza UMG 604 / UMG 604-PRO (12V / 24V) über Ethernet	. 45
8.3	Janitza UMG 96-PA-/-MID/MID+ über RS485 (nur mit Firmware 5.x / 6.x)	. 46
8.4	Janitza UMG 96 RM-E über RS485 (nur mit Firmware 6.x)	. 52
8.5	Janitza UMG 96 RM-E über Ethernet (nur mit Firmware 6.x)	. 57

9	Larsen & Toubro	58
9.1	Larsen & Toubro (WDM313CDNC)	58

10	Mikro PowerMeter	60
10.1	Mikro PowerMeter DPM680	. 60

11	Real Energy Systems - Prisma-Zähler (mit Firmware 6.x)62	2
11.1	Prisma-Zähler über Ethernet	2

12	Schneider Electric	64
12.1	Schneider EM6400NG (3-phasig)	. 64
12.2	Schneider EM6400S (3-phasig)	. 66
12.3	Schneider iEM3000 Serie (3-phasig)	. 68

13	Secure Meters	70
13.1	Secure Meters (3-phasig)	. 70

14	WattNode (CCS)	72
14.1	WattNode (CCS) (3-phasig / 1-phasig)	. 72

15	Anhang Schaltpläne	74
15.1	Beispielpläne für Erfassung von Produktion und Verbrauch	. 74
15.2	Beispielplan für Verbrauchsmessung an Hybridsystemen	. 77

1 Externe Strom-Zähler

1.1 Erfassung des Energieflusses mit externen Strom-Zählern

An jedem Solar-Log™ können externe Stromzähler über die S0-Eingange und/oder über den RS485 Bus angeschlossen werden.

Die Solar-Log[™] Geräte verfügen über unterschiedlich viele S0-Eingänge:

S0 Eingänge			
Solar-Log™	Anzahl S0 Eingänge		
Solar-Log Base	1 x S0-In		
Solar-Log 300, 1200, 1900 und 2000	2 x S0-In und 1 x S0-Out		
Solar-Log ^{1000, 500}	1 x S0-In/Out		
Solar-Log ²⁰⁰	1 x S0-In		
Solar-Log 250	1 x S0-In		

Liste der Solar-Log[™]-Geräte zum Handbuch sowie deren Kompatibilität zu den Zählern*: Solar-Log Base 15 (Firmware 5.x oder höher) Solar-Log Base 2000 (Firmware 5.x oder höher) Gateway Solar-Log 50 (Firmware 4.x) Solar-Log 250 (Firmware 4.x) Solar-Log 300 (Firmware 4.x) Solar-Log 1200 (Firmware 4.x) Solar-Log 1900 (Firmware 4.x) Solar-Log 2000 (Firmware 4.x) Solar-Log 2000 (Firmware 4.x) Solar-Log 500 (Firmware 4.x)

*Auf die Firmware der Solar-Log™-Geräte und die Implementierung der Zähler sowie deren allgemeine Kompatibilität zu den Solar-Log™-Geräten achten.

Hinweis

Der Solar-Log[™] setzt eine S0-Impulsdauer von mindestens 30ms oder länger voraus. Deshalb empfehlen wir die von uns angebotenen und getesteten Zähler zu verwenden. Für andere Produkte können wir deren Funktion nicht gewährleisten. Zudem sollte die maximale Kabellänge zwischen Stromzähler und Solar-Log[™] 10 m nicht überschreiten.

S0-Zähler übermitteln die gemessene Energie (z.B. 1 kWh) anhand einer festgelegten Impulsanzahl. Dadurch nimmt die Impulsfrequenz bei sinkender Leistung ab. Für Regelungsaufgaben wird die Momentanleistung benötigt, welche systembedingt nur mit geringer Genauigkeit übertragen wird. Daher empfehlen wir S0-Zählern **nicht** zur Umsetzung von Regelungsaufgaben einzusetzen.

Hinweis

Verbrauchszähler können Anlagengruppen zugeordnet werden. Die Zuordnung ist erst möglich, wenn im Einspeisemanagement Konfiguration | Einspeisemanagement eine Regelung mit Verrechnung des Eigenverbrauchs aktiviert wurde.

Hinweis

Mit dem Solar-Log™ lässt sich die Einspeisung der PV Anlage ins Stromnetz begrenzen. Die Begrenzung kann als Fixwert (kW oder %) oder unter Berücksichtigung des Eigenverbrauchs erfolgen. Bei einer Regelung mit Berücksichtigung des Eigenverbrauchs nimmt die Erfassung des aktuellen Verbrauchs eine zentrale Rolle ein.

Um eine Genauigkeit von +/- 2% zu erreichen muss eine reine Verbrauchsmessung realisiert werden. Bei einer Verbrauchserfassung über einen bidirektionalen Zähler am Netzverknüpfungspunkt kann diese Genauigkeit i.d.R. nicht erreicht werden. Durch unterschiedliche Mess-, Auslese- und Steuerungsintervalle können sich Unregelmäßigkeiten und Grenzwertüberschreitungen bei der Einspeisung ergeben. Somit wird von einer solchen Installation und der Verwendung von S0-Zählern dringend abgeraten.

Hinweis

Der Solar-Log™ besitzt die Möglichkeit der "Festabregelung mit Verrechnung Eigenstromverbrauch auf X%". Generelle Voraussetzung für eine Regelung auf x% ist, dass der eingesetzte Wechselrichter eine Leistungsreduzierung über Solar-Log™ ermöglicht.

Bei den Solar-Log[™] kompatiblen Wechselrichtern gibt es gravierende Unterschiede bei der Leistungsbegrenzung.

Einige Wechselrichter lassen sich nicht auf 0W bzw. 0% der Generatorleistung steuern, sondern erzeugen auch bei einer Ansteuerung auf 0 eine gewisse Restleistung. Dies ist bei der Auslegung der 0% Anlage zu berücksichtigen; zum Beispiel so, dass die Grundlast im Objekt immer größer als die Restleistung ist.

Weiterhin gibt es deutliche Unterschiede in der Reaktionszeit der Wechselrichter, diese ist zusätzlich abhängig von der Anzahl der verbauten Geräte. Von der Verwendung von S0 Zählern für 0% Regelung wird abgeraten.

- Aus diesen Gründen kann Solar-Log GmbH eine tatsächliche Null-Einspeisung nicht garantieren.
- ► In jedem Fall ist die Regelung mit dem Verteilnetzbetreiber abzustimmen.

Externe Stromzähler/Saldierende Zähler

Bei mehrphasigen Zählern wird grundsätzlich zwischen phasengenauen und saldierenden Zählern unterschieden.

Saldierende Zähler sind Zähler bei denen die Werte aller drei Phasen aufsummiert werden. Der Zähler errechnet intern die Summe der Leistungen (Bezug und Einspeisung) der einzelnen Phasen und gibt dies als einen Wert aus.

Im Beispiel:

Phase 1 speist über einen Wechselrichter (einphasig) 3 kW ein. Phase 2 bezieht 2 kW (Energie) Phase 3 bezieht 1 kW (Energie) Hieraus ergibt sich bei einem saldierenden Zähler der summierte Wert 0 kW.

Beispiele für saldierende Zähler sind der Janitza UMG 104 / UMG 604 und der Solar-Log™ PRO380.

2 Zähler-Betriebsmodi des Solar-Log™

2.1 Bedeutung der Zähler-Betriebsmodi des Solar-Log™

Es gibt beim Solar-Log™ in der Konfiguration für die Zähler, verschiedene Einstellungsmöglichkeiten. Diese sind im Speziellen:

- Deaktiviert: Die Aufzeichnung wurde oder ist deaktiviert.
- Generator: Die Werte des Zählers werden als Erzeugungswerte behandelt.
- Verbrauchszähler: Zähler, über den ausschließlich der Verbrauch erfasst wird.
- Verbrauchszähler (2-Richtungszähler): Zähler erfaßt Verbrauch und Produktion gesammelt durch Abfrage der Wechselrichter wird der tatsächlicher Verbrauch ermittelt.
- Unterverbraucher: Zähler zur Erfassung einzelner Verbraucher, welche mit einem übergeordneten Verbrauchszähler bereits erfasst werden.
- Batteriezähler (2-Richtungszähler): Erfasst Ladung und Entladung der Batterie.
- Gesamtanlagenzähler: Die Summe der Produktion aller Wechselrichter.
- Utility Meter (U+I) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base Geräte):
 Zähler für Steuer-/Regelungsaufgaben einschließlich Strommessung, nötigenfalls mit Stromwandlern.
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler): Zähler welche als Utility Meter (U+I) eingesetzt werden können, sind in diesem Modus gleichzeitig auch als Verbrauchszähler (2-Richtungszähler) einsetzbar (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base Geräte).
- Utility Meter (U) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base Geräte): Zähler für Steuer-/Regelungsaufgaben - nur Spannungsmessung.

Hinweis

Achten Sie bitte darauf, dass bei der Zählerkonfiguration unter Konfiguration | Geräte | Konfiguration | Konfiguration im Bereich "Modulfeld, Leistung & Bezeichnung", der Wert, der in das Feld "Maximale AC-Leistung" eingetragen wird, den aufzuzeichnenden Messbereich und die Skalierung der Grafik des Verbrauchs, im Solar-Log™, sowie im Web bestimmt.

3 Allgemeines zur Verkabelung

3.1 Verkabelung S0 Zähler

Der S0-Anschluss des externen Stromzählers wird wie folgt an den 6-poligen S0 In/Out (S0-IN A und S0-OUT) Stecker oder an den 4-poligen S0-IN B angeschlossen:

S0-Zähler allgemein

S0 So	lar-Log™	Solar-Log Base	Stromzähler	
PIN	1		Belegung	
►	1	▶ 4	► S0+	
►	2	▶ 5	► S0-	
►	3			
►	4			•••••••
Am	າ Solar-Log™ ist z	zwischen Pin 3 und Pin 4 eine Kabelbr	ücke zu setzen. Beim Solar-Log Base keine B	rücke.

3.2 Verkabelung RS485 Zähler

Der RS485 Ausgang der Zähler kann an jeder RS485 Schnittstelle (A, B und C) des Solar-Log™ angeschlossen werden.

Übersicht

• 2-polige Verkabelung

Arbeitsschritte

- Zähler und Solar-Log[™] stromlos schalten.
- Zähler an Solar-Log™ verkabeln.

3.3 Verkabelung Zähler zur Eigenverbrauchserfassung

Zur Erfassung des Energieverbrauchs über den Solar-Log™ gibt es zwei Optionen:

- Messung des reinen Verbrauch.
- Messung über bidirektionale Messung (Zwei Wege Messung) am Netzverknüpfungspunkt, hinter dem EVU-Zähler.

Grundsätzlich ist für die Erfassung des Energieverbrauchs ein separater Zähler zu installieren. Die von den EVU eingesetzten Zähler können in der Regel nicht durch den Solar-Log™ ausgelesen werden.

Zähler-Anschlussmöglichkeiten mit Erfassung des Gesamtverbauchs über RS485-/S0-Schnittstelle.

Dieser Zähler muss den gesamten Verbrauch des Hauses messen.

Die von den Netzbetreibern installierten Zähler bzw. Zwei-Wege-Zähler können für die Umsetzung dieser Funktion nicht verwendet werden.

Abb.: Beispiel-Stromlaufplan Eigenverbrauchserfassung. (Optional mit Batteriespeicher)

Zähler-Anschlussmöglichkeiten mit bidirektonalen Erfassung des Gesamtverbrauchs nur über RS485-Schnittstelle.

Erfolgt keine Leistungsbegrenzung der Erzeugung unter Berücksichtigung des Eigenverbrauchs, kann über einen bidirektionalen Zähler die Einspeisung und der Netzbezug erfasst werden. Der Solar-Log™ kann dadurch in Verbindung mit den Produktionswerten den Verbrauch ermitteln.

Abb: Beispiel-Stromlaufplan Eigenverbrauchserfassung - bidirektionale Messung. (Optional mit Batteriespeicher)

Hinweis zur möglichen Zählerverwendung bei Verbrauchserfassung:

- Bidirektionaler Z\u00e4hler (nur \u00fcber RS485) im Betriebsmodus "Verbrauchsz\u00e4hler (2-Richtungsz\u00e4hler)": wenn als Verbrauchsz\u00e4hler ein Bidirektionaler Z\u00e4hler eingesetzt wird, k\u00f6nnen weitere Verbrauchsz\u00e4hler lediglich im Modus "Unterverbrauchsz\u00e4hler" konfiguriert werden.
- Einrichtungszähler (RS485 oder S0) Betriebsmodus "Verbrauchszähler": mehrere Zähler am Solar-Log™ möglich, die zum Verbrauchswert addiert werden und weitere Zähler im Betriebsmodus " Unterverbrauchszähler" möglich
- Zähler im Betriebsmodus "Unterverbrauchszähler" dienen zur Darstellung der Verbrauchswerte einzelner Verbraucher. Dieser Verbrauchswert muss über Verbrauchszähler (Bidirektionaler Zähler oder Einrichtungszähler) bereits im Gesamtverbrauch miterfasst sein.

Hinweis

Weitere Beispiele von Zählerkonstellationen in Verbindung mit Produktions- und Verbrauchserfassung siehe Anhang ab Seite 53.

Mit dem Solar-Log[™] lässt sich die Einspeisung der PV Anlage ins Stromnetz begrenzen. Die Begrenzung kann als Fixwert (kW oder %) oder unter Berücksichtigung des Eigenverbrauchs erfolgen. Bei einer Regelung mit Berücksichtigung des Eigenverbrauchs nimmt die Erfassung des aktuellen Verbrauchs eine zentrale Rolle ein.

Um eine Genauigkeit von +/- 2% zu erreichen muss eine reine Verbrauchsmessung realisiert werden. Bei einer Verbrauchserfassung über einen bidirektionalen Zähler am Netzverknüpfungspunkt kann diese Genauigkeit i.d.R. nicht erreicht werden. Durch unterschiedliche Mess-, Auslese- und Steuerungsintervalle können sich Unregelmäßigkeiten und Grenzwertüberschreitungen bei der Einspeisung ergeben. Somit wird von einer solchen Installation und der Verwendung von S0-Zählern dringend abgeraten.

Hinweis

Der Solar-Log™ besitzt die Möglichkeit der "Festabregelung mit Verrechnung Eigenstromverbrauch auf X%". Generelle Voraussetzung für eine Regelung auf x% ist, dass der eingesetzte Wechselrichter eine Leistungsreduzierung über Solar-Log™ ermöglicht.

Bei den Solar-Log™ kompatiblen Wechselrichtern gibt es gravierende Unterschiede bei der Leistungsbegrenzung.

Einige Wechselrichter lassen sich nicht auf 0W bzw. 0% der Generatorleistung steuern, sondern erzeugen auch bei einer Ansteuerung auf 0 eine gewisse Restleistung. Dies ist bei der Auslegung der 0% Anlage zu berücksichtigen; zum Beispiel so, dass die Grundlast im Objekt immer größer als die Restleistung ist.

Weiterhin gibt es deutliche Unterschiede in der Reaktionszeit der Wechselrichter, diese ist zusätzlich abhängig von der Anzahl der verbauten Geräte. Von der Verwendung von S0 Zählern für 0% Regelung wird abgeraten.

- Aus diesen Gründen kann Solar-Log GmbH eine tatsächliche Null-Einspeisung nicht garantieren.
- ▶ In jedem Fall ist die Regelung mit dem Verteilnetzbetreiber abzustimmen.

4 Solar-Log[™] PRO

4.1 Solar-Log[™] PRO1

Auswählbar unter "Solar-Log/Pro/RS485"

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Hinweis

Die Kommunikationsadresse ist standardmäßig auf 1 gesetzt, kann aber verändert werden, sobald mehrere Zähler in einem RS485 BUS verwendet werden. Max. Anzahl an Zähler: ca. 60 Zähler auf dem Bus*[#] Reichweite: ca. 1000m.

* Bitte beachten Sie, dass die maximale Zähleranzahl aufgrund des verwendeten Pegelwandlers, Baudrate und weiteren Installationsumständen variieren kann.

*Es können bis zu 11 Zähler visualisiert, jedoch bis zu 60 Zähler datentechnisch ausgewertet werden.

Zähler an Solar-Log[™] verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker.

Anschlussschema

Nach Schaltungstyp 1000 (DIN 43856)

L-IN Klemme 1	Zuleitungseingang Phase "L1"
L-OUT Klemme 3	Zuleitungsausgang Phase "L1"
Klemme 4 "N"	Neutralleiteranschluss "N"
Klemme 6 "N"	Neutralleiteranschluss "N"
Klemmen 20,21	S _o -Impulsausgang
Klemmen 23,24	ModBus-Anschluss Klemme 23 -> A, 24 -> B

Abb.: Pin-Belegung

Technische Daten

230 V AC
0,25 - 5(45) A
50 Hz
Wirk- und Blindenergie in Bezugs- und Lieferrichtung
В
≤ 10VA/Phase - ≤ 2W/Phase
1 TE (17,5 mm)
10 000 lmp/kWh
2 000 Imp/kWh, RA = 0,5 Wh/Imp
≤ 5 625 W -> 32 ms > 5625 W -> 11,2 ms
-25°C bis +55°C
75 % im Mittel, kurzzeitig 95 %
0,05 – 0,25 kHz
Bezug > 4 W, Pulsrate = Verbrauch
4 + 2 Digits (9999,11 kWh)
Hauptklemmen: max. 8 mm ² Zusatzklemmen: max. 2,5 mm ²
9600 baud

Anschlussschema bei unterschiedlichen Betriebsmodi

Die Zähler verfügen über Bezeichnungen IN und OUT

Anschlussbelegung Solar-Log[™] PRO1 (RS485 oder S0)

▶	Als Verbrauchs oder Subverbrauchszähler	Zugang Netz (IN) - Abgang Verbraucher (OUT)
	Als Generator /Erzeugungszähler	Zugang Erzeugung (IN) - Abgang Netz (OUT)

Anschlussbelegung Solar-Log™ PRO1 (nur RS485)

	Als Batteriezähler (2-Richtungszähler)	Zugang Erzeugung/Netz (IN) - Abgang Batterie (OUT)
--	--	---

Kabelverbindung über RS485:

Kle Sol	mmleistenstecker ar-Log™	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Solar-Log™ PRO1
Klei	mme			Pin
►	1 (Data+)	▶ 1 oder 5	► (A) 6 oder (B) 10 (Data+)	▶ 23 (A)
►	4 (Data-)	▶ 4 oder 6	► (A) 9 oder (B) 13 (Data-)	▶ 24 (B)

Hinweis

Ist der Zähler, das letzte Gerät im Bus, muss dieser zusätzlich über die Klemme 23 und 24 mit einem (120 Ohm / 0,25W) Widerstand terminiert werden.

Der Solar-Log[™] PRO1 kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen RS485-Anschluss für den Solar-Log[™] PRO1.

► Eine Kombination mit einem M&T-Sensor sowie mit dem Solar-Log[™] PRO380, Solar-Log[™] PRO380-CT und dem Solar-Log[™] PRO2 im selben Bus, sind möglich.

Mögliche Zähler-Betriebsmodi des Solar-Log[™] PRO1 über RS485:

- Batteriezähler (2-Richtungszähler)
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Kabelverbindung über SO (IN):

Solar-Log™ S₀-Klemmleiste		Solar-Log Base	Solar-Log [™] PRO1			
Pin-Belegung			Pin-Belegung			
►	1 - S0+	► 4 - S0+	► 20 - S0+			
►	2 - SO-	► 5 - SO-	► 21 - SO-			
	3					
►	▶ 4					
Am	Am Solar-Log™ ist zwischen Pin 3 und Pin 4 eine Kabelbrücke zu setzen. Beim Solar-Log Base keine Brücke.					

Mögliche Zähler-Betriebsmodi des Solar-Log™ PRO1 über S0-Verkabelung (IN):

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Impuls-Faktor des Zählers: 1000 p / kWh

Hinweis für die S0-Impulslänge des Solar-Log™ PRO1

Folgende Werte der S0-Impulslänge des PRO1 sind bekannt:

- ≤ 5625W = Impulslänge 32ms
- > 5625W = Impulslänge 11,2ms

Der Solar-Log[™] kann S0-Impulse von einer minimalen Länge von 30ms verarbeiten. Dies bedeutet, dass der S0-Ausgang des Solar-Log[™] PRO1 für maximal 5625W verwendet werden kann.

Hinweis

Der Zähler ist nicht kompatibel mit dem Solar-Log™ 200, 500 und 1000.

4.2 Solar-Log[™] PRO2

Auswählbar unter "Solar-Log/Pro/RS485"

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Hinweis

Die Kommunikationsadresse ist standardmäßig auf 1 gesetzt, kann aber verändert werden,

sobald mehrere Zähler in einem RS485 BUS verwendet werden.

Max. Anzahl an Zähler: ca. 60 Zähler auf dem Bus*#

Reichweite: ca. 1000m.

* Bitte beachten Sie, dass die maximale Zähleranzahl aufgrund des verwendeten Pegelwandlers, Baudrate und weiteren Installationsumständen variieren kann.

*Es können bis zu 11 Zähler visualisiert, jedoch bis zu 60 Zähler datentechnisch ausgewertet werden.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker.

Anschlussschema

Nach Schaltungstyp 1000 (DIN 43856)

L-IN Klemme 1	Zuleitungseingang Phase "L1"
L-OUT Klemme 3	Zuleitungsausgang Phase "L1"
Klemme 4 "N"	Neutralleiteranschluss "N"
Klemme 6 "N"	Neutralleiteranschluss "N"
Klemmen 10, 11	ModBus-Anschluss Klemme 10 -> A, 11 -> B
Klemmen 12, 13	Nicht belegt
Klemmen 18, 19	S ₀ - Impulsausgang "FORWARD" (Klemme 18 = "+")
Klemmen 20,21	S_{o} -Impulsausgang "REVERSE" (Klemme 20 = "+")*

Abb.: Pin-Belegung

-		•		-	
00	hn		ho	11:	aton
EL		ISU	IIC.	$\boldsymbol{\nu}$	

Nennspannung	230 V AC
Strom	5 (100) A
Frequenz	50 Hz ± 10 %
Messgröße	Wirk- und Blindenergie in Bezugs- und Lieferrichtung
Genauigkeitsklasse	В
Eigenverbrauch	≤ 10VA/Phase - ≤ 2W/Phase
Breite	2 TE (35,8 mm)
Impulsausgang LED	10 000 Imp/kWh
S ₀ –Impulsausgang	1 000 lmp/kWh, 31ms
Arbeitstemperatur	-40°C bis +70°C
Max. rel. Luftfeuchte:	75 % im Mittel, kurzzeitig 95 %
Registrierte Harmonische	0,05 – 0,25 kHz
LED rot blinkend	Bezug > 4 W, Pulsrate = Verbrauch
Display	5 + 2 Digits (99999,11 kWh)
Maximaler Leiterquerschnitt	Hauptklemmen: max. 35 mm ² Zusatzklemmen: max. 2,5 mm ²
Baudrate ModBus	9600 baud

Anschlussschema bei unterschiedlichen Betriebsmodi

Die Zähler verfügen über Bezeichnungen IN und OUT

Anschlussbelegung Solar-Log[™] PRO2 (RS485 oder S0)

Als Verbrauchs oder Subverbrauchszähler	Zugang Netz (IN) - Abgang Verbraucher (OUT)
Als Generator /Erzeugungszähler	Zugang Erzeugung (IN) - Abgang Netz (OUT)

Anschlussbelegung Solar-Log™ PRO2 (nur RS485)

Als Batteriezähler (2-Richtungszähler)	Zugang Erzeugung/Netz (IN) - Abgang Batterie (OU)
Als Datteriezanier (Z-Nichtungszahler)	Zugang Lizeugung/Netz (IIN) - Abgang Datterie (C

Kabelverbindung über RS485:

KlemmleistensteckerGSolar-Log™Solar		Gat Sola	eway nr-Log 50	Solar-Log Base RS485 (A) / (B)		Solar-Log™ PRO2	
Kler	nme					Pin	
►	1 (Data+)	►	1 oder 5	►	(A) 6 oder (B) 10 (Data+)	10 (A)	
►	4 (Data-)	►	4 oder 6	•	(A) 9 oder (B) 13 (Data-)	11 (B)	

Hinweis

Ist der Zähler, das letzte Gerät im Bus, muss dieser zusätzlich über die Klemme 10 und 11 mit einem (120 Ohm / 0,25W) Widerstand terminiert werden.

Der Solar-Log[™] PRO2 kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen RS485-Anschluss für den Solar-Log[™] PRO2.

► Eine Kombination mit einem M&T-Sensor sowie mit dem Solar-Log[™] PRO380, Solar-Log[™] PRO380-CT und dem Solar-Log[™] PRO1 im selben Bus, sind möglich.

Mögliche Zähler-Betriebsmodi des Solar-Log™ PRO2 über RS485:

- Batteriezähler (2-Richtungszähler)
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Kabelverbindung über S0 (IN):

Solar-Log™ S₀-Klemmleiste	Solar-Log Base	Solar-Log™ PRO2	
Pin-Belegung		Pin-Belegung	
1 - S0+	► 4 - S0+	18 - SO+	
2 - S0-	► 5 - SO-	19 - SO-	
3			
4			
Am Solar-Log™ ist zwischen Pin 3 u	ınd Pin 4 eine Kabelbrücke zu	setzen. Beim Solar-Log Base keine Brücke.	

Mögliche Zähler-Betriebsmodi des Solar-Log[™] PRO2 über S0-Verkabelung (IN):

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Impulse-Faktor des Zählers: 1000 p / kWh

Hinweis

Der Zähler ist nicht kompatibel mit dem Solar-Log™ 200, 500 und 1000.

4.3 Solar-Log[™] PRO380

Auswählbar unter "Solar-Log Pro"

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log[™] stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Hinweis

Die Kommunikationsadresse ist standardmäßig auf 1 gesetzt, kann aber verändert werden,

sobald mehrere Zähler in einem RS485 BUS verwendet werden.

Max. Anzahl an Zähler: ca. 60 Zähler auf dem Bus*#

Reichweite: ca. 1000m.

* Bitte beachten Sie, dass die maximale Zähleranzahl aufgrund des verwendeten Pegelwandlers, Baudrate und weiteren Installationsumständen variieren kann.

*Es können bis zu 11 Zähler visualisiert, jedoch bis zu 60 Zähler datentechnisch ausgewertet werden.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Anschlussschema

Nach Schaltungstyp 1000 (DIN 43856)

Input "L1, L2, L3"	Zuleitungseingang Phase "L1, L2, L3"
Output "L1, L2, L3"	Zuleitungsabgang Phase "L1, L2, L3"
Klemme "N"	Neutralleiteranschluss "N"
Klemmen 18,19	S _o -Impulsausgang "FORWARD" (Klemme 18 = "+")
Klemmen 20,21	S _o -Impulsausgang "REVERSE" (Klemme 20 = "+")*
Klemmen 22,23	ModBus-Anschluss Klemme 22 -> A, 23 -> B
Klemmen 24,25	externe Tarifumschaltung (230V AC)

Abb.: Pin-Belegung

Technische Daten

Nennspannung	230 / 400 V AC
Strom	0,25 - 5(100) A
Frequenz	50 Hz
Messgröße	Wirk- und Blindenergie in Bezugs- und Lieferrichtung
Genauigkeitsklasse	В
Eigenverbrauch	< 10 VA - < 2 W
Anlaufstrom	20 mA
Breite	4 TE (70 mm)
Impulsausgang LED	10 000 lmp/kWh, 30 ms
S₀–Impulsausgang	1 000 lmp/kWh, 30 ms
Arbeitstemperatur	-40°C bis +70°C
Max. rel. Luftfeuchte:	75 % im Mittel, kurzzeitig 95 %
Registrierte Harmonische	0,05 – 0,25 kHz
LED	rot blinkend: Bezug > 4 W, Impulsrate = Verbrauch
Display	6 + 2 Digits (999999,11 kWh)
Maximaler Leiterquerschnitt	Hauptklemmen: Flexible Leitung bis max. 25mm ² Starre Leitung bis max. 35mm ² Zusatzklemmen: max. 2.5 mm ²
Baudrate ModBus	9600 baud

Anschlussschema bei unterschiedlichen Betriebsmodi

Die Zähler verfügen über Bezeichnungen IN (unten) und OUT (oben)

Anschlussbelegung Solar-Log™ PRO380 (RS485 oder S0)

Als Verbrauchs oder Subverbrauchszähler	Zugang Netz (IN) - Abgang Verbraucher (OUT)
Als Generator / Gesamtanlagenzähler	Zugang Erzeugung (IN) - Abgang Netz (OUT)

Anschlussbelegung Solar-Log[™] PRO380 (nur RS485)

	Als Verbrauchszähler (2-Richtungszähler)	Zugang Netz (OUT) – Abgang Haus/Anlage (IN) (Einbaulage gemäß Erzeugerpfeilsystem)
		(Ab Firmware 3.4.2 lässt sich die Zählrichtung (Aus- wertung) im Solar-Log™ von Verbrauchszählern im bidirektionalen Modus in der Gerätekonfiguration umstellen.)
►	Als Batteriezähler (2-Richtungszähler)	Zugang Erzeugung/Netz (IN) - Abgang Batterie (OUT)

Kabelverbindung über RS485:

Klei Sola	mmleistenstecker ar-Log™	Sol	ar-Log 50	Solar-Log Base RS485 (A) / (B)		Solar-Log™ PRO380	
Kler	nme					Pin	
►	1 (Data+)	►	1 oder 5	►	(A) 6 oder (B) 10 (Data+)	►	22 (A)
►	4 (Data-)	►	4 oder 6	►	(A) 9 oder (B) 13 (Data-)	►	23 (B)

lst der Zähler, das letzte Gerät im Bus, muss dieser zusätzlich über die Klemme 22 und 23 mit einem (120 Ohm / 0,25W) Widerstand terminiert werden.

Hinweis

Der Solar-Log[™] PRO380 kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen RS485-Anschluss für den Solar-Log[™] PRO380.

► Eine Kombination mit einem M&T-Sensor sowie mit dem Solar-Log™ PRO380-CT, Solar-Log™ PRO1 und dem Solar-Log™ PRO2 im selben Bus, sind möglich.

Mögliche Zähler-Betriebsmodi des Solar-Log[™] PRO380 über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Kabelverbindung über S0 (IN):

So	lar-Log™ S₀-Klemmleiste	Solar-Log Base	Solar-Log™ PRO380	
Pin-Belegung			Pin-Belegung	
►	1 - S0+	► 4 - S0+	► 18 - S0+	
•	2 - SO-	► 5 - S0-	▶ 19 - SO-	
►	3			
	4			
Am	n Solar-Log™ ist zwischen Pin 3	3 und Pin 4 eine Kabelbrücke	zu setzen. Beim Solar-Log Base keine Br	ücke.

Mögliche Zähler-Betriebsmodi des Solar-Log™ PRO380 über S0-Verkabelung (IN):

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Wechselrichtermodus

Implus-Faktor des Zählers: 1000 p / kWp

4.4 Solar-Log[™] PRO380-CT

Auswählbar unter "Solar-Log Pro".

Achtung!

Bei diesen Messwandlerzählern ist das Wandlerverhältnis nur einmalig einstellbar!

Unbedingt vor erstmaliger Inbetriebnahme klären, welches Wandlerverhältnis am Zähler eingestellt werden soll!

Wird der Zähler erstmalig an Spannung angeschlossen erscheint im Display die Meldung "Set CT" und "CT5 0005".

Wird eine Pfeiltaste betätigt, blinkt die erste Zahl von links. Hier wählen Sie mit den Pfeiltasten den Sekundärstrom zwischen /1A oder /5A aus und bestätigen diesen anschließend mit gleichzeitigem Drücken beider Pfeiltasten für 3 Sekunden. Danach stellen Sie den Primärstrom ein, indem Sie von links nach rechts alle 4 Ziffern mit den Tasten nacheinander anwählen und mit den Pfeiltasten einstellen. Der Primärstrom kann beliebig von 0005 - 9995 frei ausgewählt werden. Die ersten drei Ziffern können von 0 bis 9, die letzte nur zwischen 0 und 5 ausgewählt werden. Bestätigen Sie jede Ziffer durch betätigen beider Pfeiltasten für 3 Sekunden.

Das Wandlerverhältnis ist jetzt eingestellt und kann nicht mehr verändert werden.

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log[™] stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Hinweis

Die Kommunikationsadresse ist standardmäßig auf 1 gesetzt, kann aber verändert werden, sobald mehrere Zähler in einem RS485 BUS verwendet werden. Max. Anzahl an Zähler: ca. 60 Zähler auf dem Bus*#

Reichweite: ca. 1000m.

* Bitte beachten Sie, dass die maximale Zähleranzahl aufgrund des verwendeten Pegelwandlers, Baudrate und weiteren Installationsumständen variieren kann.

*Es können bis zu 11 Zähler visualisiert, jedoch bis zu 60 Zähler datentechnisch ausgewertet werden.

Zähler an Solar-Log[™] verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Anschlussschema

Nach Schaltungstyp 1000 (DIN 43856)

CT 1 (in) Klemme k (s1) / (out) Klemme l (s2)	10 Spannung Phase 1 (10/11 intern gebrückt)
CT 2 (in) Klemme k (s1) / (out) Klemme l (s2)	12 Spannung Phase 2 (12/13 intern gebrückt)
CT 3 (in) Klemme k (s1) / (out) Klemme l (s2)	14 Spannung phase 3 (14/15 intern gebrückt)
Klemme "N"	Neutralleiteranschluss "N"
Klemmen 18,19	S _o -Impulsausgang "FORWARD" (Klemme 18 = "+")
Klemmen 20,21	S _o -Impulsausgang "REVERSE" (Klemme 20 = "+")*
Klemmen 22,23	ModBus-Anschluss Klemme 22 -> A, 23 -> B
Klemmen 24,25	externe Tarifumschaltung (230V AC)

Abb.: Pin-Belegung

Hinweis

Wir empfehlen die Anschlussleitungen für die Spannungsmessung entsprechend der örtlichen Vorschriften und Verordnungen mit passenden Trennschalter oder Überstromschutzvorrichtungen abzusichern.

Technische Daten

230 / 400 V AC
0,015 - 1,5 (6) A
50 Hz
Wirk- und Blindenergie in Bezugs- und Lieferrichtung
В
< 10 VA - < 2 W
3 mA
4 TE (70 mm)
10 000 lmp/kWh, 2,5 ms
10 000 lmp/kWh, 30 ms
-25°C bis +70°C
75 % im Mittel, kurzzeitig 95 %
0,05 – 0,25 kHz
rot blinkend: Bezug > 4 W, Impulsrate = Verbrauch
5 + 3 Digits (99999,111 kWh)
Hauptklemmen: max. 10 mm ² Zusatzklemmen: max. 2,5 mm ²
9 600 baud

Anschlussschema bei unterschiedlichen Betriebsmodi

Anschlussbelegung Solar-Log[™] PRO380-CT (RS485 oder S0)

•	Als Verbrauchs oder Subverbrauchszähler	Zugang Netz an Wandler K(P1) - Abgang Verbraucher an Wandler L(P2)
•	Als Generator / Gesamtanlagenzähler	Zugang Erzeugung an Wandler K(P1) - Abgang Netz an Wandler L(P2)

Anschlussbelegung Solar-Log[™] PRO380-CT (nur RS485)

	Als Verbrauchszähler (2-Richtungszähler)	Zugang Netz an Wandler L(P2) - Abgang Haus/Anlage an Wandler K(P1) (Einbaulage gemäß Erzeugerpfeilsystem) 	
		(Ab Firmware 3.4.2 lässt sich die Zählrichtung (Aus- wertung) im Solar-Log™ von Verbrauchszählern im bidirektionalen Modus in der Gerätekonfiguration umstellen.)	
•	Als Batteriezähler (2-Richtungszähler)	Zugang Erzeugung/Netz an Wandler K(P1) - Abgang Batterie an Wandler L(P2)	

Kabelverbindung über RS485:

Klemmleistenstecker Solar-Log™	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Solar-Log™ PRO380-CT (COM)
Klemme			Pin
▶ 1 (Data+)	▶ 1 oder 5	► (A) 6 oder (B) 10 (Data+)	► 22 (A)
▶ 4 (Data-)	▶ 4 oder 6	► (A) 9 oder (B) 13 (Data-)	► 23 (B)

B

Hinweis

Der Solar-Log™ PRO380-CT kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden.

Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen RS485-Anschluss für den Solar-Log™ PRO380-CT.

► Eine Kombination mit einem M&T-Sensor sowie mit dem Solar-Log[™] PRO380, Solar-Log[™] PRO1 und dem Solar-Log[™] PRO2 im selben Bus, sind möglich.

Mögliche Zähler-Betriebsmodi des Solar-Log[™] PRO380-CT über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Kabelverbindung über S0 (IN):

Solar-Log™ S₀-Klemmleiste	Solar-Log Base	Solar-Log™ PRO380-CT
Pin-Belegung		Pin-Belegung
▶ 1 - S0+	► 4 - S0+	► 18 - S0+
▶ 2 - S0-	► 5 - S0-	► 19 - SO-
▶ 3		
▶ 4		
And Caller La TM interview bare Dia 2		antes a Defendante Deservation Definition

Am Solar-Log™ ist zwischen Pin 3 und Pin 4 eine Kabelbrücke zu setzen. Beim Solar-Log Base keine Brücke.

Mögliche Zähler-Betriebsmodi des Solar-Log[™] PRO380-CT über S0-Verkabelung (IN):

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Implus-Faktor des Zählers: 10000 p / kWh

5 Elkor - WattsOn

5.1 Elkor - WattsOn-1100 (3phasig)

Auswählbar unter "WattsOn".

Übersicht

- Kommunikationsadresse muss vergeben werden, steht standardmäßig auf "1".
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Zähler an Solar-Log[™] verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)	WattsOn-1100 (RS485)	
Klemme	Pin-Belegung	
 (A) 6 oder (B) 10 (Data+) 	▶ +	
► (A) 9 oder (B) 13 (Data-)	▶ -	

Letzten Zähler mit einem 120 Ohm Widerstand terminieren.

Mögliche Zähler-Betriebsmodi des WattsOn-1100:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U)
- Utility Meter (U+I)
- Utility Meter (U+I) + Verbrauchszähler (2-Richtungszähler)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

Die Konfiguration erfolgt über die Elkor WattsOn Console Software. Adressierung kann hierüber per Dip-Schalter angepasst werden und steht standardmäßig auf "1". Die Baudrate ist standardmäßig auf "9600" gesetzt.

Hinweis

Die maximale Anzahl der Geräte pro Schnittstelle beträgt 32.

5.2 Elkor - WattsOn-Mark II (3phasig)

Auswählbar unter "WattsOn".

Übersicht

- Kommunikationsadresse muss vergeben werden, steht standardmäßig auf "1".
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Zähler an Solar-Log[™] verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)	WattsOn-Mark II (RS485)	
Klemme	Pin-Belegung	
 (A) 6 oder (B) 10 (Data+) 	▶ D+	
 (A) 9 oder (B) 13 (Data-) 	▶ D-	

Letzten Zähler mit einem 120 Ohm Widerstand terminieren.

Mögliche Zähler-Betriebsmodi des WattsOn-Mark II:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U)
- Utility Meter (U+I)
- Utility Meter (U+I) + Verbrauchszähler (2-Richtungszähler)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

Hinweis

Die maximale Anzahl der Geräte pro Schnittstelle beträgt 32.

Die Default-RS485-Kommunikationsparameter des WattsOn-Mark II (Model 1) sind: Baud Rate: 9600 Data bits: 8 Parity: Keine Stop bits: 1 Geräte-Adresse 1

Die Einstellungen, Konfiguration sowie die Anpassung der Kommunikations-Adresse und Terminierung, siehe Herstellerhandbuch.

6 Inepro

6.1 Inepro 75D

Auswählbar unter "Inepro / DMM"

Übersicht

- Kommunikationsadresse kann nicht frei vergeben werden.
- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log™ stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über RS485:

Solar-Log 50	
Pin-Belegung Pin-Belegung	
► 1 (Data+) ► 1 oder 5 ► (A) 6 oder (B) 10 (Data+) ► 8 - RS485A	
► 4 (Data-) ► 4 oder 6 ► (A) 9 oder (B) 13 (Data-) ► 7 - RS485B	

Mögliche Zähler-Betriebsmodi des Inepro-Zähler 75D über RS485:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Kabelverbindung über S0:

Sol	ar-Log™ S₀-Klemmleiste	Solar-Log Base	Inepro 75D
Pin-Belegung			Pin-Belegung
►	1 - S0+	► 4 - S0+	► 6-S0+
►	2 - SO-	► 5 - SO-	► 5-SO-
►	3		
►	4		
Am	Solar-Log™ ist zwischen Pin 3	und Pin 4 eine Kabelbrücke zu setze	n. Beim Solar-Log Base keine Brücke.

Mögliche Zähler-Betriebsmodi des Inepro-Zähler 75D über S0:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Implus-Faktor des Zählers: 1600 p / kWp

Hinweis

Es kann nur ein Inepro RS485 Zähler pro RS485-Schnittstelle verwendet werden.

Hinweis

Der Inepro 75D kann nicht mit RS422 gekoppelten Wechselrichtern am gleichen Bus-Eingang verwendet werden.

Hinweis

Der Inepro Zähler 75D wird während der Geräte-Erkennung automatisch vom Solar-Log™ mit der Modbus-Adresse 234 versehen.

Diese Adresse darf daher nicht für andere Geräte verwendet werden. Nach der Konfiguration wechselt die Anzeige des Inepro Zähler zwischen dem Zählerstand und der Adressanzeige (ID=EA); daran erkennen Sie die korrekte Erkennung durch den Solar-Log™.

Alle RS485 Zähler müssen zwischen den zwei verwendeten Pins mit einem 120 Ohm Widerstand terminiert werden.

6.2 Inepro 1250D

Auswählbar unter "Inepro / DMM"

Übersicht

- Kommunikationsadresse kann nicht frei vergeben werden.
- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log[™] stromlos schalten •
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log[™] verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über RS485:

Sola	ar-Log™ RS485-Klemmleiste	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Inepro 1250D
Pin-	Belegung			Pin-Belegung
►	1	▶ 1 oder 5	▶ (A) 6 oder (B) 10 (Data+)	▶ 11 - RS485A
►	4	▶ 4 oder 6	▶ (A) 9 oder (B) 13 (Data-)	▶ 10 - RS485B

Mögliche Zähler-Betriebsmodi des Inepro-Zähler 1250D über RS485:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Kabelverbindung über S0:

Solar-Log [™] S ₀ -Klemmleiste	Solar-Log Base	Inepro 1250D	
Pin-Belegung		Pin-Belegung	
▶ 1 - S0+	► 4 - S0+	▶ 9 - S0+	
▶ 2 - S0-	► 5 - SO-	► 8 - S0-	
▶ 3			
▶ 4			
Am Solar-Log™ ist zwischen Pir	3 und Pin 1 eine Kabelbrücke	zu setzen Beim Solar-Log Base keine Br	ücko

Am Solar-Log[™] ist zwischen Pin 3 und Pin 4 eine Kabelbrücke zu setzen. Beim Solar-Log Base keine Brücke.

Mögliche Zähler-Betriebsmodi des Inepro-Zähler 1250D über S0:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Impluse-Faktor des Zählers: 400 p / kWp

Anschlussschema bei unterschiedlichen Betriebsmodi

Anschlussbelegung Solar-Log[™] Inepro 1250D (RS485 oder S0)

- Als Verbrauchs oder Subverbrauchszähler Zugang Netz (IN) Abgang Verbraucher (OUT)
- ► Als Generator / Gesamtanlagenzähler Zugang Erzeugung (IN) Abgang Netz (OUT)

Hinweis

Es kann nur ein Inepro RS485 Zähler pro RS485-Schnittstelle verwendet werden.

Hinweis

Der Inepro 1250D kann nicht mit RS422 gekoppelten Wechselrichtern am gleichen Bus-Eingang verwendet werden.

Hinweis

Für eine fehlerfreie Erkennung des Zählers durch den Solar-Log™ müssen alle drei Phasen angeschlossen sein.

Wenn ein Inepro 1250D eingesetzt wird, muss während des kompletten Erkennungsvorgangs die PRG-Taste am Zähler gedrückt und in dieser Position gehalten werden.

Sollte es nicht möglich sein, die PRG-Taste während der gesamten Erkennung gedrückt zu halten, empfehlen wir nach der Installation des Zähler diesen vorläufig mit dem Solar-Log™ über ein kurzes Kabel zu verbinden um eine Erkennung mit gedrückter PRG-Taste durchzuführen.

Bei einem zweiten Erkennungslauf mit Wechselrichter wird der Zähler dann auch ohne gedrückte PRG-Taste vom Solar-Log™ erkannt.

Die Nacherkennung des Inepro 1250D bei einer bestehenden Installation kann bis zu 15 Minuten dauern. Nach der Erkennung erfolgt eine Restrukturierung der Daten, welche je nach Datenbestand im Gerät, bis zu 45 Minuten dauern kann.

Der Inepro Zähler 1250D wird während der Geräte-Erkennung automatisch vom Solar-Log™ mit der Modbus-Adresse 234 versehen. Diese Adresse darf daher nicht für andere Geräte verwendet werden. Nach der Konfiguration wechselt die Anzeige des Inepro Zähler zwischen dem Zählerstand und der

Adressanzeige (ID=EA); daran erkennen Sie die korrekte Erkennung durch den Solar-Log™.

Alle RS485 Zähler müssen zwischen den zwei verwendeten Pins mit einem 120 Ohm Widerstand terminiert werden.

7 Iskra

7.1 Iskra WS0021

Übersicht

- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log™ stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über S0:

Sol	ar-Log™ S₀-Klemmleiste	Solar-Log Base	lskra WS0021
Pin	-Belegung		Pin-Belegung
►	1 - S0+	▶ 4 - S0+	▶ 9 - S0-
►	2 - SO-	▶ 5 - SO-	▶ 8 - S0+
►	3		
►	4		
••••			

Am Solar-Log™ ist zwischen Pin 3 und Pin 4 eine Kabelbrücke zu setzen. Beim Solar-Log Base keine Brücke.

Mögliche Zähler-Betriebsmodi des Iskra-Zähler WS0021 über S0:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Implus-Faktor des Zählers: 1000 p / kWp
7.2 Iskra WS0031

Übersicht

- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log™ stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über S0:

So	lar-Log™ S₀-Klemmleiste	Sol	ar-Log Base	ls	kı	ra WS0031
Pin	-Belegung			Pi	n-	Belegung
►	1 - S0+	►	4 - S0+	►		S0+
►	2 - SO-	►	5 - S0-	►		S0-
►	3				•••	
►	4				•••	
Am	n Solar-Log™ ist zwischen Pin 3 ı	und F	in 4 eine Kabelbrüc	:ke zu setzen.	В	eim Solar-Log Base keine Brücke.

Mögliche Zähler-Betriebsmodi des Iskra-Zähler WS0031 über S0:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Implus-Faktor des Zählers: 500 p / kWp

7.3 Iskra WS1102

Auswählbar unter "Iskra".

Übersicht

- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log[™] verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker.

Kabelverbindung über RS485:

Solar-Log™ RS485-Klemmleiste	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	lskra WS1102
Pin-Belegung			Pin-Belegung
▶ 1 - Data+	▶ 1 oder 5	► (A) 6 oder (B) 10 (Data+)	► A+ (23)
▶ 4 - Data-	▶ 4 oder 6	▶ (A) 9 oder (B) 13 (Data-)	► B- (24)

Mögliche Zähler-Betriebsmodi des Iskra-Zähler WS1102 über RS485:

- Gesamtanlagenzähler
- Unterverbrauchszähler
- Verbrauchszähler
- Generator

Hinweis

Ist der Zähler, das letzte Gerät im Bus, muss dieser zusätzlich über die Pins A (23) und B (24) mit einem (120 Ohm) Widerstand terminiert werden.

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden.

8 Janitza "Utility Meter"

8.1 Janitza UMG 104 / UMG 604 / UMG 604-PRO (12V / 24V)

Bei der Geräte-Erkennung "Janitza" auswählen.

Hinweis

Alle Angaben und Werte sind dem Janitza-Handbuch entnommen. Es wird keine Gewähr übernommen. Bitte Hersteller Dokumente überprüfen.

Das Solar-Log[™] Utility Meter ist ein universelles Messgerät. Es kann ins Niederspannungs- als auch ins Mittelspannungsnetz (über Wandler) integriert werden und wird für verschiedene Funktionen benötigt:

- spannungsgeführte Blindleistungsregelung Q(U)
- Blindleistungsregelung am Einspeisepunkt
- Erfassung von Messwerten für die Rückmeldung an den Netzbetreiber .

Bei der spannungsgeführten Blindleistungsregelung Q(U) wird lediglich eine Spannungsmessung benötigt (Wir empfehlen trotzdem eine Spannungsmessung und Strommessung vorzunehmen um eine einwandfreie Funktion der Regelung prüfen zu können). Für die anderen Funktionen wird Strom- und Spannungsmessung benötigt.

Versorgungsspannung Utility Meter:

• 95-240Vac, 45-65Hz bzw. 135-340Vdc

Die Messeingänge des Utility Meter haben folgende Grenzwerte:

- Spannung N-L AC (ohne Spannungswandler): 10...300 V AC
- Spannung L-L, AC (ohne Spannungswandler): 17...520 V AC
- Strom (ohne Stromwandler): 0,005..7,5 A
- Frequenz der Grundschwingung: 45 ..65 Hz

Diese Grenzwerte dürfen nicht überschritten werden. Daher ist in den meisten Anwendungsfällen eine Wandler-Messung zu installieren.

- Wir empfehlen folgende Wandlerverhältnisse:
- Spannung: Sekundär 100V
 z.B. bei 20kV Netz Wandler 20000:100V
- Strom: Sekundär 5A
 z.B. 100:5A

Hinweis

Das von uns verwendete "Utility Meter" wird von der Firma Janitza hergestellt.

Weitere technische Details finden Sie im Handbuch des Janitza UMG 104 / UMG 604 / UMG 604-PRO.
 ▶ Die Betriebsmodi Utility Meter (U / U+I) sind nur mit dem Solar-Log 1000, 1900, 2000 und Solar-Log Base möglich.

Hinweis

Der Utility Meter kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Utility Meter.

Anschluss Utility Meter ans Stromnetz

Abb.: Beispiel - Anschlussschema Spannungsmessung im Niederspannungsnetz mit UMG 104 Utility Meter

Abb.: Anschlussschema Spannungsmessung mit Messwandlern (Mittelspannung) mit Utility Meter

Abb.: Beispiel - Anschlussschema Strommessung mit UMG 104 Utility Meter mit Messwandlern

Vorgehen

• Versorgungsspannung am Utility Meter anlegen

Hinweis

Wir empfehlen die Anschlussleitungen für die Versorgungsspannung über eine Sicherung abzusichern. Bitte beachten Sie die Hinweise im Handbuch des Janitza UMG 104 / UMG 604 / UMG 604-PRO.

Hinweis

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Vorsicht

Die Eingänge für die Versorgungsspannung sind berührungsgefährlich.

Kabelverbindung über RS485:

1. Bei der Kabelverbindung die Adern nach folgendem Schema anklemmen:

Kle	mmleistenstecker Solar-Log™	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Klemmleiste Utility Meter
Kler	nme			Pin
►	1 (Data+)	▶ 1 oder 5	► (A) 6 oder (B) 10 (Data+)	▶ 22
►	4 (Data-)	▶ 4 oder 6	► (A) 9 oder (B) 13 (Data-)	► 23

2. Klemmleistenstecker in RS485-Buchse des Solar-Log[™] stecken.

- Der RS485 Bus muss terminiert werden.
 Zur Terminierung einen 120 Ohm, 0,25 W Widerstand zwischen Pin 22 und 23 des Utility Meter verbauen.
- Konfiguration am Display des Utility Meter
 Einstellung MODBUS Adresse (PRG 200 = 1)
 Einstellung Baudrate RS485 (PRG 202 = 2)
 Einstellung Modus (PRG 203 = 0)
 Einstellung Stromwandler primär (PRG 000)
 Einstellung Stromwandler sekundär (PRG 001)
 Einstellung Spannungswandler primär (PRG 002)
 Einstellung Spannungswandler sekundär (PRG 003)
 Die Vorgehensweise für die Konfiguration des UMG 104 / UMG 604 / UMG 604-PRO entnehmen Sie der dem Gerät beiliegenden Anleitung.

Hinweis

Die Einstellungen dieser Parameter muss vor der Geräteerkennung erfolgen. Mit abweichenden Parametern wird das Utility Meter vom Solar-Log™ nicht erkannt.

Hinweis

Bei mehreren Zählern in einem Bus, müssen unterschiedliche Modbus-Adressen (PRG 200) vergeben werden.

- Geräte-Erkennung durchführen:
- Siehe Solar-Log™ Handbuch Kapitel "Geräte-Erkennung".
- Utility Meter unter Konfiguration | Geräte | Konfiguration zuweisen, entsprechenden Betriebsmodus auswählen und SPEICHERN.

Kontrolle

Zeigt das Utility Meter bei einspeisenden Wechselrichtern positive Werte, der aktuellen Leistung (kW), an?
 Sollte dies nicht der Fall sein, ist die Strommessung falsch angeschlossen.
 Tauschen sie ggf. die Polarität der Messeingänge.

Hinweis

Beim Tausch der Polarität, darf die Leitung nicht stromführend sein, da der Wandler sonst zerstört werden kann.

Mögliche Zähler-Betriebsmodi des Janitza UMG 104 / UMG 604 / UMG 604-PRO über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Anschlussbelegung / Einbaulage vom Janitza UMG 104 / UMG 604 / UMG 604-PRO (12V / 24V) (Utility Meter) in Verbindung mit Solar-Log™

Hinweis

Für die Unterschiedlichen Betriebsmodi des Janitza UMG 104 / UMG 604 / UMG 604-PRO gilt die Einbaulage der Stromwandler zu prüfen.

Hinweis

Auf richtige Phasenzuordnung der Spannungsmessung zur Strommessung ist zu achten.

Bei richtiger Einbaulage sind in den einzelnen Betriebsmodi folgende Leistungswerte zu messen.

Betriebsmodus		Leistungswert		
	Als Utility Meter (U+I)	Bei Einspeisung positive Leistungswerte (kW)		
	Als Gesamtanlagenzähler	Bei Einspeisung positive Leistungswerte (kW)		
	Als Generator	Bei Einspeisung positive Leistungswerte (kW)		
	Als Verbrauchs- oder Subverbrauchszähler	Bei Bezug positive Leistungswerte (kW)		
•	Als Verbrauchszähler (2-Richtungszähler)	Wenn Erzeugung größer als Verbrauch positive Leis- tungswerte (kW) (Einbaulage gemäß Erzeugerpfeilsystem)		
		(Ab Firmware 3.4.2 lässt sich die Zählrichtung (Aus- wertung) im Solar-Log™ von Verbrauchszählern im bidirektionalen Modus in der Gerätekonfiguration umstellen.)		
•	Als Batteriezähler (2-Richtungszähler)	 Wenn Batteriespeicher geladen wird positive Leistungswerte (kW) Wenn Batteriespeicher entladen wird negative Leistungswerte (kW) 		

8.2 Janitza UMG 604 / UMG 604-PRO (12V / 24V) über Ethernet

Terminierung	Adressierung	Schnittstelle
Nein	la	LAN

Bei der Geräte-Erkennung "Janitza" auswählen.

Übersicht

- Schnittstelle integriert
- Verkabelung über Netzwerkkabel (Patchkabel) und Ethernet-Router oder Switch
- Kommunikationsadresse muss statisch vergeben werden
- Arbeitsschritte
 - Janitza und Solar-Log[™] stromlos schalten
 - Janitza an Solar-Log™ verkabeln

Janitza an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

- Netzwerkkabel (Patchkabel/Crossoverkabel) und
- Ethernet-Router oder –Switch.

IP-Adressen Vergabe für die Erkennung und Kommunikation:

IP-Adressen Vergabe gemäß Hersteller-Anleitung. Beide Geräte müssen sich im gleichen Subnetz befinden.

Erkennung über Solar-Log[™] WEB-Oberfläche

- Für die Erkennung am Solar-Log[™] wählen Sie unter Punkt
 Konfiguration | Geräte | Definition | Schnittstelle über das Plus-Symbol, die Geräteklasse und danach den Hersteller Janitza aus. Bestätigen Sie Ihre Auswahl durch OK
- Speichern Sie und starten Sie unter Konfiguration | Geräte | Erkennung die Geräte-Erkennung

Erkennung Solar-Log 1200

Die Geräte-Erkennung am Solar-Log 1200 kann alternativ auch über das Display gestartet werden. Wählen Sie Einstellungen ► Start ► Anfangskonfiguration ► Seite 2 "Geräte" ► Zufügen und wählen dort den Hersteller "Janitza" aus. Anschließend Speichern und Geräte-Erkennung starten.

Hinweis

Für eine erfolgreiche Geräteerkennung über Ethernet ist die Vergabe einer festen IP-Adresse notwendig. Zusätzlich müssen die Register 200 bis 204, die RS232 und RS485 betreffen, auf der werkseitigen Voreinstellung verbleiben.

Hinweis

Die Zähler-Betriebsmodi über Ethernet, sind identisch mit denen der RS485-Variante.

8.3 Janitza UMG 96-PA-/-MID/MID+ über RS485 (nur mit Firmware 5.x /

6.x)

Bei der Geräte-Erkennung "Janitza" auswählen.

Hinweis

Alle Angaben und Werte sind dem Janitza-Handbuch entnommen. Es wird keine Gewähr übernommen. Bitte Hersteller Dokumente überprüfen.

Versorgungsspannung Janitza UMG 96-PA-/-MID/MID+: Option 230 V: Nennbereich: • AC 90 V - 277 V (50/60 Hz) oder DC 90 V - 250 V, 300 V CATIII Leistungsaufnahme:

• max. 4,5 VA / 2 W

Option 24 V:

Nennbereich:

- AC 24 V 90 V (50/60Hz) oder DC 24 V 90 V, 150 V CATIII
- Leistungsaufnahme:
- max. 4,5 VA / 2 W

Die Messeingänge des Janitza UMG 96-PA-/-MID/MID+ haben folgende Grenzwerte:

- Spannung N-L: 0¹) .. 600 Vrms (max. Überspannung 800 Vrms)
- Spannung L-L: 01) .. 1040 Vrms (max. Überspannung 1350 Vrms)
- Strom: 0,005 .. 6 Arms
- Frequenz der Grundschwingung: 45 Hz .. 65 Hz

¹) Das Gerät ermittelt Messwerte nur, wenn am Spannungsmesseingang V1 eine Spannung L1-N von größer 20 Veff (4-Leitermessung) oder eine Spannung L1-L2 von größer 34 Veff (3-Leitermessung) anliegt.

Diese Grenzwerte dürfen nicht überschritten werden. Daher ist in den meisten Anwendungsfällen eine Wandler-Messung zu installieren.

Wir empfehlen folgende Wandlerverhältnisse:

- Spannung: Sekundär 100V
 z.B. bei 20kV Netz Wandler 20000:100V
- Strom: Sekundär 5A z.B. 100:5A

Hinweis

Das von uns verwendete "Utility Meter" wird von der Firma Janitza hergestellt. Weitere technische Details finden Sie im Handbuch des Janitza UMG 96-PA-/-MID/MID+.

▶ Die Betriebsmodi Utility Meter (U / U+I) sind nur mit dem Solar-Log Base möglich.

Hinweis

Der Utility Meter kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Utility Meter.

Anschluss Janitza UMG 96-PA-/-MID/MID+ ans Stromnetz

Abb.: Anschlussbeispiel "Versorgungsspannung"

Abb.: Anschlussbeispiel "Strommessung über Stromwandler"

Abb.: Anschlussbeispiel für die Spannungsmessung.

Vorgehen

• Versorgungsspannung am UMG 96-PA-/-MID/MID+ anlegen

Hinweis

Wir empfehlen die Anschlussleitungen für die Versorgungsspannung über eine Sicherung abzusichern. Bitte beachten Sie die Hinweise im Handbuch des Janitza UMG 96-PA-/-MID/MID+.

Hinweis

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Vorsicht

Die Eingänge für die Versorgungsspannung sind berührungsgefährlich.

Hinweis

Die Messspannung muss effektiv mindestens 10 V betragen, sonst kann keine exakte Messung durchgeführt werden.

Kabelverbindung über RS485:

• Bei der Kabelverbindung die Adern nach folgendem Schema anklemmen:

Solar-Log Base RS485 (A) / (B) Pin		Klemmleiste Janitza UMG 96-PA-/-MID/MID+ Pin		
►	(A) 9 oder (B) 13 (Data-)	►	16 B	

- Der RS485 Bus muss terminiert werden.
 Zur Terminierung einen 120 Ohm, 0,25 W Widerstand zwischen Pin 15 und 16 des Janitza UMG 96-PA-/-MID/ MID+ verbauen.
- Konfiguration am Display des Utility Meter: Einstellung MODBUS Adresse (1 = Standardeinstellung)
 Einstellung Baudrate RS485 (38400 kbps)
 Einstellung Datenrahmen (2 stopbit)

Die Vorgehensweise für die Konfiguration des UMG 96-PA-/-MID/MID+ entnehmen Sie der dem Gerät beiliegenden Anleitung.

Hinweis

Die Einstellungen dieser Parameter muss vor der Geräteerkennung erfolgen. Mit abweichenden Parametern wird das Janitza UMG 96-PA-/-MID/MID+ vom Solar-Log™ nicht erkannt.

Hinweis

Bei mehreren Zählern in einem Bus, müssen unterschiedliche MODBUS Adressen vergeben werden.

- Geräte-Erkennung durchführen
 Siehe Solar-Log[™] Handbuch Kapitel "Geräte-Erkennung".
- Janitza unter Konfiguration | Geräte | Konfiguration zuweisen, entsprechenden Betriebsmodus auswählen und SPEICHERN.

Kontrolle

• Sie können die Werte unter Diagnose | Einspeisemanagement | Utility Meter auf Plausibilität hin überprüfen.

Hinweis

Beim Tausch der Polarität, darf die Leitung nicht stromführend sein, da der Wandler sonst zerstört werden kann.

Mögliche Zähler-Betriebsmodi des Janitza UMG 96-PA-/-MID/MID+:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U)
- Utility Meter (U+I)
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Anschlussbelegung / Einbaulage vom Janitza UMG 96-PA-/-MID/MID+ in Verbindung mit Solar-Log™

Hinweis

Für die Unterschiedlichen Betriebsmodi des Janitza UMG 96-PA-/-MID/MID+ gilt die Einbaulage der Stromwandler zu prüfen.

Hinweis

Auf richtige Phasenzuordnung der Spannungsmessung zur Strommessung ist zu achten.

Bei richtiger Einbaulage sind in den einzelnen Betriebsmodi folgende Leistungswerte zu messen.

Betriebsmodus		Leistungswert		
	Als Utility Meter (U+I)	Bei Einspeisung positive Leistungswerte (kW)		
	Als Gesamtanlagenzähler	Bei Einspeisung positive Leistungswerte (kW)		
	Als Generator	Bei Einspeisung positive Leistungswerte (kW)		
	Als Verbrauchs- oder Subverbrauchszähler	Bei Bezug positive Leistungswerte (kW)		
•	Als Verbrauchszähler (2-Richtungszähler)	Wenn Erzeugung größer als Verbrauch positive Leis- tungswerte (kW)		
•	Als Batteriezähler (2-Richtungszähler)	 Wenn Batteriespeicher geladen wird positive Leistungswerte (kW) Wenn Batteriespeicher entladen wird negative Leistungswerte (kW) 		

8.4 Janitza UMG 96 RM-E über RS485 (nur mit Firmware 6.x)

Bei der Geräte-Erkennung "Janitza" auswählen.

Hinweis

Alle Angaben und Werte sind dem Janitza-Handbuch entnommen. Es wird keine Gewähr übernommen. Bitte Hersteller Dokumente überprüfen.

Versorgungsspannung Janitza UMG 96 RM-E:
Option 230 V:
Nennbereich:
AC 90 V - 277 V (50/60 Hz) oder DC 90 V - 250 V, 300 V CATIII
Leistungsaufnahme:
max. 7,5 VA / 4 W
Option 24 V:
Nennbereich:

• AC 24 V - 90 V oder DC 24 V - 90 V, 150 V CATIII

Leistungsaufnahme:

• max. 7,5 VA / 5 W

Die Messeingänge des Janitza UMG 96 RM-E haben folgende Grenzwerte:

- Spannung L-N: 0¹) .. 300 Vrms (max. Überspannung 520 Vrms)
- Spannung L-L: 01) .. 520 Vrms (max. Überspannung 900 Vrms)
- Strom: 0 .. 6 Arms
- Frequenz der Grundschwingung: 45 Hz .. 65 Hz

¹) Das Gerät ermittelt Messwerte nur, wenn am Spannungsmesseingang V1 eine Spannung L1-N von größer 20 Veff (4-Leitermessung) oder eine Spannung L1-L2 von größer 34 Veff (3-Leitermessung) anliegt.

Diese Grenzwerte dürfen nicht überschritten werden. Daher ist in den meisten Anwendungsfällen eine Wandler-Messung zu installieren.

Wir empfehlen folgende Wandlerverhältnisse:

- Spannung: Sekundär 100V
- z.B. bei 20kV Netz Wandler 20000:100V
- Strom: Sekundär 5A z.B. 100:5A

Hinweis

Das von uns verwendete "Utility Meter" wird von der Firma Janitza hergestellt. Weitere technische Details finden Sie im Handbuch des Janitza UMG 96 RM-E.

Hinweis

8

Der Utility Meter kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Utility Meter.

Anschluss Janitza UMG 96 RM-E ans Stromnetz

Abb.: Anschlussbeispiel "Versorgungsspannung"

Abb.: Anschlussbeispiel "Strommessung über Stromwandler"

Abb.: Anschlussbeispiel für die Spannungsmessung.

Vorgehen

• Versorgungsspannung am UMG 96 RM-E anlegen

Hinweis

Wir empfehlen die Anschlussleitungen für die Versorgungsspannung über eine Sicherung abzusichern. Bitte beachten Sie die Hinweise im Handbuch des Janitza UMG 96 RM-E.

Hinweis

Versorgungsspannungen, die nicht der Typenschildangabe entsprechen, können zu Fehlfunktionen und zur Zerstörung des Gerätes führen.

Vorsicht

Die Eingänge für die Versorgungsspannung sind berührungsgefährlich.

Hinweis

Die Messspannung muss effektiv mindestens 10 V betragen, sonst kann keine exakte Messung durchgeführt werden.

Kabelverbindung über RS485:

1. Bei der Kabelverbindung die Adern nach folgendem Schema anklemmen:

Solar-Log Base RS485 (A) / (B)	Klemmleiste Janitza UMG 96 RM-E
Klemme	Pin
► (A) 6 oder (B) 10 (Data+)	▶ 17 A
▶ (A) 9 oder (B) 13 (Data-)	▶ 16 B

2. Der RS485 Bus muss terminiert werden.

Zur Terminierung einen 120 Ohm, 0,25 W Widerstand zwischen Pin 16 und 17 des Janitza UMG 96 RM-E verbauen.

 Konfiguration am Display des Utility Meter: Einstellung MODBUS Adresse (1 = Standardeinstellung) Einstellung Baudrate RS485 (38400 kbps) Einstellung Datenrahmen (2 stopbit)
 Die Verrehensweise für die Konfiguration des UMC 06 BM E optnehmen Sie der dem Co

Die Vorgehensweise für die Konfiguration des UMG 96 RM-E entnehmen Sie der dem Gerät beiliegenden Anleitung.

Hinweis

Bei mehreren Zählern in einem Bus, müssen unterschiedliche MODBUS Adressen vergeben werden.

Hinweis

Die Einstellungen dieser Parameter muss vor der Geräteerkennung erfolgen. Mit abweichenden Parametern wird das Janitza UMG 96 RM-E vom Solar-Log™ nicht erkannt.

- Geräte-Erkennung durchführen
 Siehe Solar-Log™ Handbuch Kapitel "Geräte-Erkennung".
- Janitza unter Konfiguration | Geräte | Konfiguration zuweisen, entsprechenden Betriebsmodus auswählen und SPEICHERN.

Kontrolle

• Sie können die Werte unter Diagnose | Einspeisemanagement | Utility Meter auf Plausibilität hin überprüfen.

Hinweis

Beim Tausch der Polarität, darf die Leitung nicht stromführend sein, da der Wandler sonst zerstört werden kann.

Mögliche Zähler-Betriebsmodi des Janitza UMG 96 RM-E:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U)
- Utility Meter (U+I)
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

GeneratorAnschlussbelegung / Einbaulage vom Janitza UMG 96 RM-E in Verbindung mit Solar-Log™

Hinweis

Für die Unterschiedlichen Betriebsmodi des Janitza UMG 96 RM-E gilt die Einbaulage der Stromwandler zu prüfen.

Hinweis

Auf richtige Phasenzuordnung der Spannungsmessung zur Strommessung ist zu achten.

Bei richtiger Einbaulage sind in den einzelnen Betriebsmodi folgende Leistungswerte zu messen.

Betriebsmodus		Leistungswert		
	Als Utility Meter (U+I)	Bei Einspeisung positive Leistungswerte (kW)		
►	Als Gesamtanlagenzähler	Bei Einspeisung positive Leistungswerte (kW)		
►	Als Generator	Bei Einspeisung positive Leistungswerte (kW)		
	Als Verbrauchs- oder Subverbrauchszähler	Bei Bezug positive Leistungswerte (kW)		
	Als Verbrauchszähler (2-Richtungszähler)	Wenn Erzeugung größer als Verbrauch positive Leis- tungswerte (kW)		
•	Als Batteriezähler (2-Richtungszähler)	 Wenn Batteriespeicher geladen wird positive Leistungswerte (kW) Wenn Batteriespeicher entladen wird negative Leistungswerte (kW) 		

8.5 Janitza UMG 96 RM-E über Ethernet (nur mit Firmware 6.x)

Terminierung Adressierung Schnittstelle

Nein Ja LAN

Bei der Geräte-Erkennung "Janitza" auswählen.

Übersicht

- Schnittstelle integriert.
- Verkabelung über Netzwerkkabel (Patchkabel) und Ethernet-Router oder Switch.
- Kommunikationsadresse muss statisch vergeben werden.
- Arbeitsschritte:
 - Janitza und Solar-Log™ stromlos schalten.
 - Janitza an Solar-Log™ verkabeln.

Janitza an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

- Netzwerkkabel (Patchkabel/Crossoverkabel) und
- Ethernet-Router oder Switch.

IP-Adressen Vergabe für die Erkennung und Kommunikation:

IP-Adressen Vergabe gemäß Hersteller-Anleitung. Beide Geräte müssen sich im gleichen Subnetz befinden.

Erkennung über Solar-Log[™] WEB-Oberfläche

- Für die Erkennung am Solar-Log[™] wählen Sie unter Punkt Konfiguration | Geräte | Definition | Schnittstelle über das Plus-Symbol, die Geräteklasse und danach den Hersteller Janitza aus. Bestätigen Sie Ihre Auswahl durch OK.
- Speichern Sie und starten Sie unter Konfiguration | Geräte | Erkennung die Geräte-Erkennung.

Hinweis

Für eine erfolgreiche Geräteerkennung über Ethernet ist die Vergabe einer festen IP-Adresse notwendig. Zusätzlich müssen die Register 200 bis 204, die RS232 und RS485 betreffen, auf der werkseitigen Voreinstellung verbleiben.

Hinweis

Die Zähler-Betriebsmodi über Ethernet, sind identisch mit denen der RS485-Variante.

9 Larsen & Toubro

9.1 Larsen & Toubro (WDM313CDNC)

Auswählbar unter "L&T:Vega"

Übersicht

- Kommunikationsadresse muss vergeben werden
- 2-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log™ stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über RS485:

Sol	ar-Log™ RS485-Klemmleiste	Gateway Solar-Log 50	So	lar-Log Base RS485 (A) / (B)	L&T WDM313CDNC
Pin	-Belegung				Pin-Belegung
	1 (Data+)	► 1 oder 5	►	(A) 6 oder (B) 10 (Data+)	▶ 9 D+
►	4 (Data-)	► 4 oder 6	►	(A) 9 oder (B) 13 (Data-)	▶ 10 D-

Abb.: Pin-Belegung

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Kommunikations-Adresse vergeben (bei 1 beginnend) Baud Rate: 9600 bps Data bits: 8 Stop bits: 1 Parity: Gerade

► Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Herstellers)

Mögliche Zähler-Betriebsmodi des L&T WDM313CDNC über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

HI

Hinweis

Der Zähler kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Zähler.

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden.

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

10 Mikro PowerMeter

10.1 Mikro PowerMeter DPM680

Auswählbar unter "Mikro: DPM680"

Übersicht

- Kommunikationsadresse muss vergeben werden
- 3-polige Verkabelung
- Arbeitsschritte
 - Zähler und Solar-Log™ stromlos schalten
 - Zähler an Solar-Log™ verkabeln

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker

Kabelverbindung über RS485:

Solar-Log™ RS485-Klemmleiste	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Mikro PowerMeter DPM680
Pin-Belegung			Pin-Belegung
1 (Data+)	▶ 1 oder 5	 (A) 6 oder (B) 10 (Data+) 	▶ +
▶ 3 GND	► 3 GND	► (A) 8 oder (B) 12 GND	▶ GND
▶ 4 (Data-)	► 4 oder 6	► (A) 9 oder (B) 13 (Data-)	▶ -

Hinweis

Die Default-RS485-Kommunikationsparameter des Zählers sind: BAUD: 38400 Data bits: 8 Parity: Keine Stop bits: 1

Nur mit diesen Einstellungen am Zähler kann der Solar-Log[™] mit dem Zähler kommunizieren. Unbedingt vor der Geräte-Erkennung überprüfen.

- ► Kommunikations-Adresse vergeben (gemäß Herstellerhandbuch)
- Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Herstellers)

Mögliche Zähler-Betriebsmodi des Mikro PowerMeter DPM680 über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Utility Meter (U) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Utility Meter (U+I) + Verbrauch (2-Richtungszähler) (mit Solar-Log 1000, 1900, 2000 und Solar-Log Base)
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden.

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

11 Real Energy Systems - Prisma-Zähler

(mit Firmware 6.x)

11.1 Prisma-Zähler über Ethernet

Auswählbar unter "Real Energy Systems: Prisma".

Unterstützte Modelle:

- Prisma 310A
- Prisma 310A-Lite

Übersicht

- Schnittstelle integriert.
- Verkabelung über Netzwerkkabel (Patchkabel) und Ethernet-Router oder Switch.
- Kommunikationsadresse muss statisch vergeben werden.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Verkabeln des Prisma-Z\u00e4hlers mit dem Router oder Switch und laut Anleitung des Herstellers konfigurieren.
 - Verkabeln Sie den Solar-Log[™] mit einem Router oder Switch. Stellen Sie sicher, dass sich beide Geräte im gleichen Netzwerk befinden. (Hersteller-Anleitung beachten.)

Die Verkabelung erfolgt über

- Netzwerkkabel (Patchkabel/Crossoverkabel) und
- Ethernet-Router oder Switch.

IP-Adressen Vergabe für die Erkennung und Kommunikation:

IP-Adressen Vergabe gemäß Hersteller-Anleitung. Beide Geräte müssen sich im gleichen Subnetz befinden.

Erkennung über Solar-Log[™] WEB-Oberfläche

- Für die Erkennung am Solar-Log[™] wählen Sie unter Punkt
 Konfiguration | Geräte | Definition | Schnittstelle über das Plus-Symbol, den Hersteller "Real Energy Systems" und dann den Typ "Prisma" auswählen. Bestätigen Sie Ihre Auswahl durch OK.
- Speichern Sie und starten Sie unter Konfiguration | Geräte | Erkennung die Geräte-Erkennung.

Möglicher Betriebsmodus des Prisma-Zählers:

• Verbrauchszähler (2-Richtungszähler)

Hinweis!

Um eine Kommunikation über Modbus TCP/IP zu gewährleisten und eine erfolgreiche Geräteerkennung über Ethernet durchzuführen zu können, muss der Port 502 zwischen den beiden Geräte geöffnet sein.

Hinweis!

Nur kompatibel mit der Betriebsart Bidirektionaler Zähler.

12 Schneider Electric

12.1 Schneider EM6400NG (3-phasig)

Auswählbar unter "Schneider Electric: EM6400NG".

Unterstützt ab Firmware 4.1.0

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log[™] verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung mit Klemmleistenstecker.

Kabelverbindung über RS485:

Sola	ar-Log™ RS485-Klemmleiste	Gateway Solar-Log 50	Solar-Log Base RS485 (A) / (B)	Schneider EM4600NG
Pin-	Belegung			Pin-Belegung
►	1 (Data+)	▶ 1 oder 5	▶ (A) 6 oder (B) 10 (Data+)	► 7 (D1 +)
•	4 (Data-)	▶ 4 oder 6	▶ (A) 9 oder (B) 13 (Data-)	▶ 14 (D0 -)

Terminierung: 120 Ohm Widerstand zwischen Pin 7 und 14 beim Zähler

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Baud Rate: 19200 bps Data bits: 8 Stop bits: 1 Parity: Gerade

 Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Zählers)

Mögliche Zähler-Betriebsmodi des Schneider EM6400NG über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis

Der Zähler kann nicht mit Wechselrichtern zusammen in einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Zähler.

Hinweis!

Es können keine verschiedenen Modell-Serien vom gleichen Hersteller im selben Bus betrieben werden.

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden. Maximale Buslänge 900m.

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

Hinweis

Der Zähler ist nicht kompatibel mit dem Solar-Log[™] 200, 500 und 1000.

12.2 Schneider EM6400S (3-phasig)

Auswählbar unter "Schneider Electric/EM6400S".

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)	Schneider EM6400S Pin-Belegung		
Klemme			
 (A) 6 oder (B) 10 (Data+) 	► 7 (D1+)		
 (A) 9 oder (B) 13 (Data-) 	▶ 14 (D0-)		
•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		

Terminierung: 120 Ohm Widerstand zwischen Pin 7 und 14 beim Zähler

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Baud Rate: 9600 bps Data bits: 8 Stop bits: 1 Parity: Gerade

 Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Zählers)

Mögliche Zähler-Betriebsmodi des Schneider EM6400S über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis

Der Zähler kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Zähler.

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden.

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

12.3 Schneider iEM3000 Serie (3-phasig)

Auswählbar unter "Schneider Electric: iEM3000 Serie".

Unterstützte Modelle:

• 3150, 3155, 3250, 3255, 3350, 3355, 3455, 3555

Übersicht

- Kommunikationsadresse muss vergeben werden (Adressbereich 1-247).
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log™ verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)	Schneider iEM3000 Serie	
Klemme	PIN	
► (A) 6 oder (B) 10 (Data+)	▶ D1/+	
► (A) 8 oder (B) 12 (GND)	► OV	
▶ (A) 9 oder (B) 13 (Data-)	▶ D0/-	

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Baud Rate: 19200 bps Data bits: 8 Stop bits: 1

Parity: Gerade

 Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Zählers)

Mögliche Zähler-Betriebsmodi des Schneider iEM3000 Serie über RS485:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis

Der Zähler kann nicht mit Wechselrichtern zusammen an einem Bus kombiniert werden. Verwenden Sie daher, einen RS485 Anschluss für die Wechselrichter und einen separaten RS485-Anschluss für den Zähler.

Hinweis

Es können pro Bus maximal 32 Geräte angeschlossen werden.

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

13 Secure Meters

13.1 Secure Meters (3-phasig)

Auswählbar unter "Secure".

Unterstützte Serie/Modelle:

- Serie Elite 440:
- Modelle:
 - 445, 446, 447

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 2-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log™ stromlos schalten.
 - Zähler an Solar-Log[™] verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)	Secure Meters (RS485)	
Klemme	Pin-Belegung	
▶ (A) 6 oder (B) 10 (Data+)	▶ +	
 (A) 9 oder (B) 13 (Data-) 	▶ -	

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Baud Rate: 9600 bps Data bits: 8 Stop bits: 1

Parity: No

 Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Zählers)

Mögliche Zähler-Betriebsmodi des Secure Meters:

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

14 WattNode (CCS)

14.1 WattNode (CCS) (3-phasig / 1-phasig)

Auswählbar unter "WattNode".

Unterstützte Modelle:

• WND-WR-MB

Übersicht

- Kommunikationsadresse muss vergeben werden.
- 3-polige Verkabelung.
- Arbeitsschritte:
 - Zähler und Solar-Log[™] stromlos schalten.
 - Zähler an Solar-Log[™] verkabeln.

Zähler an Solar-Log™ verkabeln

Die Verkabelung erfolgt über

• selbstkonfektionierte Kabelverbindung.

Kabelverbindung über RS485:

Solar-Log Base RS485 (A) / (B)		WattNode (RS485)	
Kle	mme	Pin	-Belegung
	(A) 6 oder (B) 10 (Data+)	►	B+
	(A) 8 oder (B) 12 (GND)	►	С
►	(A) 9 oder (B) 13 (Data-)	►	A-

Terminierung: Über Dip-Schalter 7 (siehe Zähler-Handbuch des Herstellers)

Hinweis

Vor der Geräte-Erkennung müssen nachfolgende Parameter überprüft werden, da sonst der Zähler nicht erkannt wird: Baud Rate: 115200 bps Data bits: 8 Stop bits: 1 Parity: No

 Einstellungen erfolgen über das Display des Gerätes. (Beachten Sie hierbei die Hinweise und Erläuterungen im Handbuch des Zählers)
Mögliche Zähler-Betriebsmodi des WattNode (CCS):

- Batteriezähler (2-Richtungszähler)
- Gesamtanlagenzähler
- Unterverbraucher
- Verbrauchszähler
- Verbrauchszähler (2-Richtungszähler)
- Generator

Hinweis!

Beachten Sie, bezüglich der Montage, Verkabelung und Konfiguration des Gerätes, bitte die Erläuterungen und Hinweise im Handbuch des Herstellers.

15 Anhang Schaltpläne

15.1Beispielpläne für Erfassung von Produktion und Verbrauch

Abb.: Direkte Verbrauchsmessung mit PV und BHKW

Abb.: Verbrauchszähler bidirektional mit BHKW und div. Unterverbrauchern

Abb.: Direkte Verbrauchsmessung mit mehreren Zählern

6

Hinweis zum Schaltbild

Bei der Verwendung von mehreren Zählern im Betriebsmodus "Verbrauchszähler" werden die Werte vom Solar-Log™ addiert.

Hinweis

Sollten bei Ihrer Planung noch Fragen offen sein, kontaktieren Sie bitte unseren Support.

15.2 Beispielplan für Verbrauchsmessung an Hybridsystemen

Abb.: Verbrauchsmessung an Hybridsystem mit KEBA-Ladestation

Solar-Log GmbH Fuhrmannstraße 9 72351 Geislingen-Binsdorf Germany Tel.: +49 (0)7428/4089-300 info@solar-log.com www.solar-log.com www.solar-log.com Das Urheberrecht dieser Anleitung verbleibt beim Hersteller. Kein Teil dieser Anleitung darf in irgendeiner Form ohne die schriftliche Genehmigung der Solar-Log GmbH reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Änderungen vorbehalten.

Alle Angaben erfolgen ohne Gewähr und Anspruch auf Vollständigkeit.

Zuwiderhandlungen, die den o. g. Angaben widersprechen, verpflichten zu Schadensersatz.

Alle in dieser Anleitung genannten Marken sind das Eigentum ihrer jeweiligen Hersteller und hiermit anerkannt. Die Marke "Speedwire" ist ein in vielen Ländern eingetragenes Warenzeichen der SMA Solar Technology AG.

Für Druckfehler wird keine Haftung übernommen.

